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ABSTRACT 
 

The analysis and design of high-rise structures is one of the challenges faced by researchers 

and engineers due to their nonlinear behavior and large displacements. The moment frame 

system is one of the resistant lateral load-bearing systems that are used to solve this problem 

and control the displacements in these structures. However, this type of structural system 

increases the construction costs of the project. Therefore, it is necessary to develop a new 

method that can optimize the weight of these structures. In this work, the weight of these 

significant structures is optimized by using one of the latest metaheuristic algorithms called 

special relativity search. The special relativity search algorithm is mainly developed for the 

optimization of continuous unconstrained problems. Therefore, a penalty function is used to 

prevent violence of the constraints of the problem, which are tension, displacement, and 

drift. Also, using an innovative technique to transform the discrete problem into a 

continuous one, the optimal design is carried out. To prove the applicability of the new 

method, three different problems are optimized, including an eight-story one-span, a fifteen-

story three-span bending frame, and a twenty-four-story three-span moment frame. The 

weight of the structure is the objective function, which should be minimized to the lowest 

possible value without violating the constraints of the problem. The calculation of stress and 

displacements of the structure is done based on the regulations of AISC-LRFD 

requirements. To validate, the results of the proposed algorithm are compared with other 

advanced metaheuristic methods. 
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1. INTRODUCTION 
 

Structural optimization has been recognized as an important tool in the design process in the 

past decades. Optimization methods can be grouped by topology, size and shape of 

optimization. The goal of optimization can be to minimize weight or compliance for a given 

amount of material and boundary conditions. This method can be used to design engineering 

structures, but it can also be used to create microstructures. Therefore, a structure is needed 

to achieve this goal. However, to understand this purpose, the term "best" must be defined. 

The first characteristic that comes to mind may be that the structure should be as light as 

possible, that is, it should reach its minimum weight. Another "best" idea can be the 

discussion of structure strength and resistance, and at the same time, it is possible to 

consider another idea to make the structure resistant to buckling or instability. It is clear that 

such maximization or minimization cannot be done without applying any restrictions 

because a structure that is optimized without constraints will not lead to a suitable solution 

and result. The parameters that usually limit the problem in the optimization of structures are 

the tension of members, displacement of nodes or the geometry of the structure. 

In this study, the goal is to minimize the weight of the steel moment frame structures, and 

these types of problems are included in the constrained optimization group. Due to the fact 

that the objective function is to minimize the weight of the whole structure, the constraints 

related to tension and displacement should be taken into consideration, because by reducing 

the weight too much, the stability of the structure is lost and causes irreparable financial and 

life damage. The design of structures is done in the form of classical methods, gradient-

based methods, and metaheuristic methods. The classical method, known as the iterative 

method, is based on evidence, which can be described as follows. (a) A specific plan is 

proposed. (b) Performance-based requirements are reviewed. (c) If they are not fulfilled, the 

tension is too high and a new plan should be proposed. Even if such requirements are met, it 

may not lead to an optimal design, so a new design may still be required. (d) The proposed 

new design is returned to step (b). In this way, an iterative process is formed in which, on a 

mostly intuitive basis, a set of designs is created, the goal of which is to reach an acceptable 

and convergent final design. 

The gradient-based design optimization method is conceptually different from the 

iterative-intuitive method. In this method, a mathematical optimization problem is 

formulated, where the requirements arising from the function act as constraints, and the 

concept of "as good as possible" is given a precise mathematical form. But among the 

problems of these methods is the computational cost and spending a lot of time to reach the 

best optimal answer. Instead, metaheuristic methods that have become remarkably popular 

in the last two decades have been used for these purposes. 

The mechanism of metaheuristic methods is completely innovative. Finding a 

metaheuristic algorithm to provide a suitable solution that has the ability to reach the optimal 

solution for complex and hard optimization problems. Finding a near-optimal search method 

based on incomplete or insufficient information is essential in this real world of limited 

resources, such as computing power and time. In the past three decades, several methods 

have been presented by researchers, including: Simon [1], presented the optimization 

algorithm based on biogeography (BBO), which is based on the distribution of vital species  [
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in different regions. Storn and Price [2], using the mutation process and adding the weight 

difference of two population vectors to the third vector, produced a new population. Also, 

Lee and Tom [3], Kennedy and Eberhart [4], who inspired the collective behavior of fish 

and birds, presented the Particle Swarm Algorithm (PSO). Deriko and his colleagues [5], by 

observing and being inspired by the collective behavior of ants to find the closest path to 

food by a chemical called pheromone, proposed the ant colony optimization algorithm 

(ACO). Caraboga and Kastrek [6] introduced the Artificial Bee Colony (ABC) algorithm by 

exploiting the relationships between worker bees, guards and queen bees in finding food 

sources. Chu and his colleagues [7] proposed the Cat Swarm Algorithm (CSO) by using the 

behavior of cats in searching, tracking and finding prey. Also, Mirjalili and his colleagues 

[8] also presented a metaheuristic algorithm called Grasshopper Optimization Algorithm 

(GOA), which is inspired by the behavior of grasshoppers and the influence of their 

surrounding environment. Also, the methods that follow the laws of physics and chemistry 

are: Gooderzimehr et al. [9] proposed a new metaheuristic optimization algorithm based on 

the physics theory of special relativity called Special Relativity Search (SRS). Kaveh and 

Talatahari [10] presented the Charged System Search algorithm (CSS) based on the laws 

governing Newtonian mechanics and Coulomb's laws. Hatem Lu [11] introduced the Black 

Hole (BH) optimization algorithm, which is inspired by the black hole phenomenon in 

physics, and in this method, the best particle is selected as a black hole, and the stars that are 

too close to the black hole come close, they will be swallowed by the black hole. 

Goodarzimehr et al [12] developed special relativity search to solve engineering problems. 

Using two or more algorithms in a hybridized process, researchers presented new 

algorithms that they use to solve problems. The purpose of this action is to identify their 

strengths and weaknesses as well as establish a balance between exploration and exploitation 

abilities. Some of these algorithms are: Mahri et al. [13], developed a hybrid algorithm of 

Genetics Algorithm and Particle Swarm Optimization (GA-PSO) to optimize the size and 

topology of structures. Talatahri et al. [14] introduced the Teaching Learning Based 

Optimization and Harmony Search (TLBO-HS) algorithm for the optimization of large-scale 

structures. Also, Talaatahri et al. [15] used the hybridized algorithm of Symbiotic Organisms 

Search (SOS) to optimize the size of structures. Topal et al. [16] presented the fundamental 

frequency optimization of composite quadrilateral plates reinforced with graded carbon 

nanotubes using an improved hybrid algorithm of particle swarm optimization and genetic 

algorithm. Gooderzimehr et al. [17] presents a new hybrid algorithm of particle swarm 

optimization and genetic algorithm for the optimization of spacial trusses with continuous 

design variables. Dastan et al. [18] presented an optimization algorithm for frame structures 

with continuous variables. Gooderzimehr et al. [19] optimized statically restrained truss 

structures using the Banobo algorithm. Dehghani et al. [20] optimized the weight of moment 

frames by modifying and improving the performance of the Adolescent Identity Search 

algorithm. Goodarzimehr et al. [21] proposed an improved chaos game optimization 

algorithm for predicting the optimal frequency of variable stiffness curved composite plate. 

Goodarzimehr et al [22] investigated the generalized displacement control method and 

introduced an applicable version for generalized displacement control to perform the 

nonlinear analysis stage in the optimization of spatial structures. Dastan et al. [23] proposed 

a new and effective algorithm called hybrid optimization based on teaching-learning and  [
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charging system search algorithms to solve truss optimization problems. Goodarzimehr et al 

[24] proposed a weighted chaos game optimization and implemented it to optimize 

engineering structures with dynamic constraints. 

For the first time, Kemp et al. [25] used the Ant Colony Optimization algorithm to 

optimize the discrete steel frames. Degertkin [26] used Harmony Search (HS) algorithm for 

optimal design of steel frames. This method is based on the analogy between the process of 

performing natural music and searching for solutions for optimization problems. Kaveh and 

Talat Ahri [27] introduced the Imperialist Competitive Algorithm (ICA) for the optimal 

design of skeletal structures. This method is a multi-agent algorithm where each agent is a 

country that is either colonial or imperialist. These countries form empires in the search 

space. Hamid Farrokhi et al [28] proposed a combination of optimization algorithms based 

on firefly and biogeography for the optimal design of steel frames based on flashing patterns 

and optimization based on biogeography. Salajegheh et al. [38] developed a novel version of 

PSO based on first and second order gradients for optimization purposes. Salajegheh et al. 

[39] hybridized two metaheuristic algorithms based on gradient direction for optimization of 

structures. Salajegheh et al. [40] advanced Momentum method by PSO for optimization of 

structures. Goodarzimehr et al. [41] proposed a novel swarm algorithm for optimal design of 

space structures under the natural frequency constraints. Goodarzimehr et al. [42] developed 

and investigated a new single objective method for optimization of mathematical and 

engineering problems. Kaveh et al. [43-56] developed different advanced metaheuristic 

methods for optimal design of steel frames. To obtain efficient results they developed and 

investigated different versions of metaheuristic methods such as charged system search, bat 

algorithm, cuckoo search algorithm, colliding body optimization, and dolphin monitoring 

operator for optimal design of steel frames with different and unique structural analysis 

methods. Also, they presented a comprehensive review of the application of metaheuristic 

methods in structural optimization. Their results indicated that the metaheuristic methods are 

efficient tools for solving this class of engineering problems. 
In this work, the special relativity search algorithm has been developed to optimize the 

weight of moment frame structures. The special relativity search algorithm is simulated by 

the inspiration of special relativity physics. One of the most important issues in 

metaheuristic algorithms is the development of an effective equation for the main step of the 

algorithm. The main step equation of special relativity search includes several parameters 

and can effectively measure the displacement vector of particles. In order to evaluate the 

performance of this algorithm, structural problems have been optimized. To validate and 

prove the superiority of the proposed algorithm, its results are compared with other 

advanced metaheuristic methods. 

 

 

2. SPECIAL RELATIVITY SEARCH ALGORITHM  
 

In this section, the various parameters of the special relativity search algorithm are 

completely explained. This algorithm is one of the newest metaheuristic algorithms, which 

was first proposed by Gooderzimehr et al. [9] for the optimization of 83 mathematical 

functions, including unimodal, multimodal, combined, and composite. After some time, by  [
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further examining the algorithm and identifying its strengths and weaknesses, they were able 

to optimize mathematical functions with bounded boundaries, structural and mechanical 

problems with continuous, discrete and combinatorial variables [12]. The results show that 

this algorithm has obtained better results than other advanced metaheuristic methods. Also, 

the low standard deviation and high speed of convergence make its results reliable. But 

research and efforts are still necessary to reach an effective method that can provide better 

and more reliable results. 

This algorithm has simulated a magnetic space as an feasible search space. The search 

space is the space where particles can choose the optimal answer from the infinity of optimal 

answers. The particles in the magnetic field are also considered as the primary population. 

These particles in each step, by evaluating different points of the search space, improve their 

position relative to the global optimal response. The interaction between particles in a 

magnetic field is depicted in Fig. 1 and Fig. 2. 

 

 
Figure 1. Interaction between particles in a magnetic field 

 

 
Figure 2. Produced magnetic field by a particle 

 

where the force applied to the Qj particle is due to the magnetic field created by the Qj 
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particle. Also, Qj creates a magnetic field Bj at the location of Qi. The direction of Bi is 

perpendicular to Qi and the direction of Fi is towards Qj because Bj is in that direction. If the 

set at Qj is accounted by Qi, the force Fj acting on Qj is equal in magnitude and opposite in 

direction to Fi. This is based on Newton's third law, which must be observed. When the 

particles are in opposite directions, the forces reverse and repel the allied particles. Hence, 

parallel particles carrying charges in one direction attract and parallel particles carrying 

charges in the opposite direction repel others. The force between particles has been known 

as the Lorentz force, which includes two electric and magnetic parts (Eq. (1)). 

 

[ ]j j i j iF Q E v B    (1) 
 

vi and vj is the initial velocity of charged particles ith and jth. Due to the uniformity of the 

magnetic field, the electric force is ignored and only the magnetic force between the 

particles is considered. Eq. (1) is rewritten as follows. 

 

m j j iF Q v B  (2) 

 

As shown in Fig. 3, the magnetic force between the particles causes the particles to move 

in a circular direction. The way particles move in the magnetic force field is perpendicular to 

the velocity vector, so in a circular movement, the direction changes but the velocity does 

not change. The magnetic force is always perpendicular to the velocity vector and does 

nothing on the particle, therefore the kinetic energy and velocity of the particle remain 

constant. In such special conditions, the speed of the particles remains constant while the 

direction of movement is variable. The particle moves in a circular path under the influence 

of a force in the direction of the center of the circle, which is due to the radial nature of the 

force. The angle between the velocity vector and the force vector is perpendicular, therefore, 

a particle with relative mass m and charge Q can be considered to move with velocity v at an 

angle of 90 degrees to the magnetic field. Since the Lorentz force is perpendicular to the 

velocity vector, it causes the particle to start rotating in a circular path. Therefore, the 

Lorentz force is defined as a radial force according to Eq. (3). 

 
2

j j j i

mv
F ma Q v B

r
    (3) 

 

By applying inverse Lorentz transformations and two important phenomena of length 

contraction and time dilation, the main step of the algorithm is defined using Eq. (4). 

 
2 2 2( 1) ( ) ( ) 1 ( ) 1ij j j jX t X t V t X t         (4) 

 

After determining the new position and speed of the particles, we need to make sure that 

it is in the feasible space. Therefore, the optimal answer must be between the upper and 

lower bounds. Particle speed is a random value that must be updated in each iteration. In the 

next step, the value of the objective function is determined and to avoid convergence to the 
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local optimal point, it is necessary to update the local and global optimal vectors. For more 

information about this algorithm, refer to Refs. [9] and [12]. Trajectory path of a particle 

with mass m is shown by Fig. 3. 

In most cases, metaheuristic algorithms are inherently incapable of solving constrained 

problems, because these methods are primarily designed to solve unconstrained problems. In 

this study, where the main focus is on solving bounded problems, it is necessary to use an 

effective strategy to solve these types of problems. To solve the constraint problem, the 

function presented in Eq. (5) is applied. For more information about this function, refer to 

Ref. [37]. 

 

 
Figure 3. Trajectory path of a particle with mass m in a magnetic field 

 

,

1 1

( ) ( ) max(0, ( )) max(0, ( )), 1,2,...,
g h

n n

k k g h

k k

F X f X g X h X k n 
 

      (5) 

 

where, f(x) is the objective function. gk and hk the bound functions are unequal and 

equal, respectively. ꞵ and μ there are penalty factors. 

 

 

3. DEFINITION AND FORMULATION OF STEEL MOMENT FRAMES 

PROBLEM 
 

The problems that are investigated in this work include the optimal design of skeletal 

structures such as standard frame of one span-8 stories, three spans-15 stories and 24 stories 

three spans. These problems have been chosen to show the reliability and applicability of the 

presented method. The frame optimization problem is formulated as follows.   [
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Minimize      ( )

Subject to ( ) 0 1 2

{ , ,..., ,..., }
1 2

f X

g X i , ,...,mi

d
X x x x x ÎRnj

 



 (6) 

 

where g(X) is the constraints of the problem and m represents the number of constraints. In 

structure optimization problems, the main objective is usually to minimize the weight of the 

structure under design constraints. The design variables are selected as the cross-sectional 

area of the elements. The cross section of the element is selected from a discrete set. 

Therefore, the optimization problem can be formulated as follows: 

 

8
( ) ( ) 1 0.2

9

( ) ( ) 1 0.2
2

Minimize (X) ( )
1

( )
Subject to 1 0, 1,2,...,

{ , ,..., }
1 2

u

P M M Pu ux ux ufor
P M M Pn b nx b nx n

P M M Pu ux ux ufor
P M M Pn b nx b nx n

Ne
f W A Li i i i

i

Aj i
g j NnD j

g
S i

A A Ae e pi e e

   

   




   



    


  



   





 

A

A A

 
(7) 

 

where W shows the weight of structures. Ai, ρi and Li represent the cross-sectional area, 

material density and length of the i-th member, respectively. Δj and Δu are the displacement 

of floor jth and the allowed displacement (which is equal to one three hundredth of the height 

of the floor), respectively. Ne indicates the number of members and Nn indicates the number 

of floors of the structure. In addition, Ae is a list of available discrete cross-sections. 

The penalty method replaces a constrained optimization problem with a set of 

unconstrained optimization problems. These problems are created by adding a condition to 

the objective function, which includes a penalty parameter and a degree of constraint 

violation. As an example, the use of penalty parameters was used in 1999 with the Rayleigh-

Ritz method in modeling rigid boundaries [31]. In this research, the penalized weight is 

calculated based on the penalty function as follows: 

 

( ) ( )[1 ]x W x   
 

(8) 

 

where ε represents the power of the penalty function and μ is the constraint violation 

function, which is: 

  [
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en NN

j i

g g
D j S i

   
 

(9) 

 

which gDj and gSi are the violation of the displacement and drift restrictions of the floors and 

the violation of the stress constraints, which have been used in accordance with the 

requirements of the LRFD approach. The value of the penalty function gSi is equal, which is 

formulated as follows (Eq. (10)). 

 

0 0

0

S i

S i

S i S i

if g
g

g if g


 

  

(10) 

 

3.1. One span-8 stories moment frame 

The member groups are formed in such a way that consecutive two-story columns (starting 

from the base) form a column group and consecutive three-story beams (starting from the 

foundation) form a separate beam group. except for the roof beam, which is just a separate 

group of beams. There are a total of 8 independent size design variables in the grouping. The 

geometry of this structure is shown in Fig. 4. The design variables related to the beam 

element groups were selected from the W267 sections. The frame material has yield stress 

Fy = 36 Ksi and modulus of elasticity E = 200 Gpa. The unbraced length for each beam is 

considered to be one fifth of the length of the span. Columns are assumed to be unbraced 

along their length. The optimal design of the frame is based on the requirements of AISC-

LRFD with regard to displacement and resistance limits. 
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Figure 4. Topology of 8 stories moment frame 

 
Figure 5. Convergence history of 8 stories moment frame 

 

The results of the SRS algorithm and other metaheuristic methods that have optimized 
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the weight of this structure in the past years are presented in Table 1 for validation. The best 

optimal response obtained by SRS, ACO, GA, PSOPC and PSOPC+ACO is equal to 31.89, 

31.68, 32.83, 34.21, and 32.29, respectively. As observed, SRS and ACO have obtained the 

best optimal answers. In order to more accurately evaluate the results of the SRS algorithm, 

a statistical analysis has also been carried out, which is presented in Table 1. This statistical 

analysis is based on the Best answer, Median, Average, Worst optimal answer and Standard 

Deviation. One of the important features of metaheuristic algorithms, which has made 

research on these methods continue, is that the algorithm obtains stable results. The stability 

of the results of an algorithm depends on the value reported by the standard deviation. The 

value of standard deviation (SD) of SRS algorithm is equal to 0.0976. This shows that the 

results of the proposed method are reliable. This is despite the fact that other metaheuristic 

methods have not reported values related to standard deviation and other statistical 

parameters. Also, to graphically display the process of convergence of the optimal responses 

obtained from the statistical analysis of these results, it is drawn in Fig. 5. 

 
Table 1. performance comparison for 8 stories moment frame 

 

3.2. Three span-15 stories moment frame 

The 15-story 3-span frame structure consists of 64 joints and 105 members. Columns are 

grouped into ten distinct element groups, while all beams form only one group. Column 

groups are formed in such a way that the outer columns of three consecutive floors (starting 

from the foundation) form a separate column group and the internal columns form another 

separate column group. Therefore, it has 11 distinct design variables. The geometry of this 

structure is shown in Fig. 6. All design objects (groups of members) are selected from the 

W267 sections. The modulus of elasticity of steel is E = 29,000 Ksi and the yield stress of 

Element group (Eg) GA [29] ACO [30] PSOPC [31] PSOPC+ACO [31] SRS 

Eg (1) W18×46 W21×50 W18×35 W18×35 W14×43 

Eg (2) W16×31 W16×26 W14×26 W16×31 W14×43 

Eg (3) W16×26 W16×26 W16×26 W14×22 W8×18 

Eg (4) W12×16 W12×14 W14×26 W12×16 W16×31 

Eg (5) W18×35 W16×26 W24×62 W21×48 W10×33 

Eg (6) W18×35 W18×40 W18×35 W18×40 W14×22 

Eg (7) W18×35 W18×35 W16×31 W16×31 W6×20 

Eg (8) W14×26 W14×22 W12×30 W16×36 W10×26 

Best weight (kip) 32.83 31.68 34.21 32.29 31.89 

Median (kip) N/A N/A N/A N/A 32.02 

Average weight (kip) N/A N/A N/A N/A 32.39 

Worst response (kip) N/A N/A N/A N/A 34.98 

SD (kip) N/A N/A N/A N/A 0.0976 
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steel is Fy = 36 Ksi. The unbraced length for each beam is considered as one-fifth of the 

span length. Columns are assumed not to be combinable along their length. The length 

factors of members and performance settings are similar to the 8-story 1-span frame 

structure. 

 

 
 

Figure 6. Topology of 15 stories moment frame 
 

 
Figure 7. Convergence history of 15 stories frame 
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Figure 8. Drift diagram of 15 stories moment frame 

 

 
Figure 9. Member’s stresses of 15 stories moment frame 
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The optimal answers obtained for SRS, BB-BC, ICA, EWOA and CSS, which are 

391.5788, 434.54, 417.45, 392, 412.6, respectively, are presented in Table 2. SRS has 

obtained the most optimal answer in this problem and has performed better than other 

methods. EWOA has also performed well and is ranked second. The statistical results 

calculated for SRS indicate that this algorithm extracts reliable answers. The value of SD in 

solving this problem is equal to 2.5566, which is higher than the SD obtained for the 

previous problem. The reason for this is the increase in the height of the floors. In addition, 

in the 15-story frame problem, in addition to displacement and stress constraints, drift 

constraint is also considered in order to control the displacement of the floors in the height 

of the building. The SRS convergence diagram is drawn in Fig. 7. As you can see, SRS has 

converged to acceptable optimal responses after 100 iterations. The diagram of drift and 

stress created in the structural elements for the best optimal response is drawn in Fig. 8 and 

Fig. 9, respectively. 

 

3.3. Three span-24 stories moment frame 

The 24-story, 3-span steel frame structure, shown in Fig. 10, including 168 members (96 

columns and 72 beams) is studied here as a final design example. This structure is one of the 

most popular examples in the field of optimizing the structures with descrete variables. All 

Table 2: performance comparison for 15 stories moment frame 

Element group (Eg) BB-BC [32] ICA[27] EWOA [33] CSS[35] SRS 

Eg (1) W24×117 W24×117 W14×99 W21×147 W12×106 

Eg (2) W21×132 W21×147 W27×161 W18×143 W26×146 

Eg (3) W12×95 W27×84 W27×84 W12×87 W12×79 

Eg (4) W18×119 W27×114 W24×104 W30×108 W24×103 

Eg (5) W21×93 W14×74 W21×68 W18×76 W14×82 

Eg (6) W18×97 W18×86 W18×86 W24×103 W18×86 

Eg (7) W18×76 W12×96 W21×48 W21×68 W21×73 

Eg (8) W18×65 W24×68 W14×68 W14×61 W18×65 

Eg (9) W18×60 W10×39 W8×31 W18×35 W10×19 

Eg (10) W10×39 W12×40 W10×45 W10×33 W16×36 

Eg (11) W21×48 W21×44 W21×44 W21×44 W21×44 

Best weight (KN) 434.54 417.45 392 412.6 391.5788 

Median (KN) N/A N/A N/A N/A 394.5969 

Average weight (KN) N/A N/A 403.99 N/A 395.3113 

Worst response (KN) N/A N/A N/A N/A 399.5649 

SD (KN) N/A N/A N/A N/A 2.5566 
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structural elements are classified into 20 distinct element groups (16 column groups and 4 

beam groups). 16 groups are selected from 14 W sections, while 4 beam groups are selected 

from all 267 W sections. The modulus of elasticity of the materials used is equal to E = 

29732 ksi and the yield stress is Fy = 33.4 ksi. The operation length coefficients are 

calculated as kx ≥ 0 for the oscillation allowed frame and the out-of-plane operation length is 

determined as ky = 1.0. All the columns and beams are considered to be incapacitated in 

their length. In this example, the resistance and displacement levels are obtained in 

accordance with the requirements of the AISC-LRFD code 

 

 

Table 3: performance comparison for 24 stories moment frame 

Element group ACO [30] HS [26] ES-DE [36] FA-BBO [28] SRS 

Eg (1) W30×90 W14×176 W30×90 W30×90 W8×13 

Eg (2) W8×18 W14×145 W21×55 W12×14 W12×16 

Eg (3) W24×55 W14×176 W24×48 W21×48 W12×14 

Eg (4) W8×21 W14×132 W10×45 W6×9 W14×30 

Eg (5) W14×145 W14×132 W14×145 W14×145 W14×26 

Eg (6) W14×132 W14×109 W14×109 W14×120 W14×22 

Eg (7) W14×132 W14×109 W14×99 W14×120 W14×30 

Eg (8) W14×132 W14×82 W14×145 W14×74 W14×26 

Eg (9) W14×68 W14×82 W14×109 W14×68 W14×22 

Eg (10) W14×53 W14×61 W14×48 W14×53 W14×30 

Eg (11) W14×43 W14×74 W14×38 W14×38 W14×26 

Eg (12) W14×43 W14×48 W14×30 W14×22 W14×43 

Eg (13) W14×145 W14×34 W14×99 W14×109 W14×43 

Eg (14) W14×145 W14×30 W14×132 W14×109 W14×22 

Eg (15) W14×120 W14×22 W14×109 W14×109 W14×34 

Eg (16) W14×90 W14×22 W14×68 W14×90 W14×26 

Eg (17) W14×90 W30×90 W14×68 W14×74 W14×22 

Eg (18) W14×61 W10×22 W14×68 W14×68 W14×22 

Eg (19) W14×30 W18×40 W14×61 W14×30 W14×34 

Eg (20) W14×26 W12×16 W14×22 W14×22 W14×22 

Best weight (kip) 220.47 214.86 212.39 202.90 200.0548 

Median (kip) N/A N/A N/A N/A 204.9118 

Average weight (kip) 229.56 222.62 N/A N/A 209.6410 

Worst response (kip) N/A N/A N/A N/A 214.9812 

SD (kip) 4.56 N/A N/A N/A 4.5564 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.1

.5
75

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

aa
re

f.
iu

st
.a

c.
ir

 o
n 

20
25

-1
1-

23
 ]

 

                            15 / 21

http://dx.doi.org/10.22068/ijoce.2024.14.1.575
https://maaref.iust.ac.ir/ijoce/article-1-575-fa.html


V. Goodarzimehr and F. Salajegheh 

 

76 

  
Figure 10. Topology of 24 stories moment frame 

 

 
Figure 11. Convergence history of 24 stories frame 
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Figure 12. Drift diagram of 24 stories moment frame 

 

 
Figure 13. Member’s stresses of 24 stories frame 

 

The results of the optimal design of the three-span 24-story structure for the methods 

SRS, ACO, HS, ES-DE and FA-BBO are presented in Table 3. These results are  200.0548, 

220.47, 214.84, 212.39, and 202.90, respectively. The best answer in solving this problem 

belongs to SRS. This structure has 24 floors and its total height is 86.4 meters. Using the 

moment frame system to control the displacement and drift of this structure increases the 

construction cost. Therefore, reducing the cost of building materials can be significantly 

economical. The results of statistical analysis are presented in Table 3. This is while other 

methods have reported only the optimal weight. The SRS convergence diagram is drawn in 

Fig. 11. The drift changes in the height of the structure are plotted in Fig. 12. Also, the stress 

of the structural elements for the best optimal response is drawn in Fig. 13. 
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4. CONCLUSION 
 

In order to optimize the weight of high-order moment frame structures, SRS algorithm was 

used. This algorithm is one of the newest metaheuristic methods developed for optimization 

purposes. The main idea of this algorithm is to simulate the movement of particles in a 

magnetic field. Then, for the first time, the physics of special relativity has been used to 

formulate the equations. This algorithm has recently shown good performance in solving 

optimization problems of complex mathematical functions. However, good results were not 

obtained in solving structural engineering problems, including high-rise moment frames. 

Therefore, to solve this problem by making changes and using the penalty function, it was 

adapted to the problem. To evaluate the effectiveness and performance of SRS algorithm in 

solving structural problems, three steel frame problems including 8-story one-span, 15-story 

three-span and 24-story three-span frames were designed and optimized. The optimal design 

results obtained from this algorithm showed that this method can be used as a powerful 

algorithm in the optimal design of steel frames. According to the allowed values of drift and 

stress of the members, it is possible to understand the ability of the proposed algorithm in 

optimization, because the drift values are close to the maximum allowed value and the stress 

ratio of most of the members has values close to one. By comparing the results of the 

proposed algorithm with some previous methods presented by other researchers, the results 

showed that the SRS algorithm has a high capability in optimizing the weight of steel 

frames. The standard deviation (Std) obtained from 50 independent executions of the 

program showed that the proposed algorithm has high stability with a lower SD value 

compared to other compared algorithms. This new meta-heuristic algorithm can be easily 

used in other complex mathematical and optimization problems. 
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